
A Review of Human Factors Research in

Distributed Software Engineering

Austin D. T. FitzGerald

Abstract

As recently spotlighted by the COVID-19 pandemic, shifts towards distributed working

environments result in dichotomous experiences for software engineers. The advent of a

pandemic is a factor of its own. However, past research in distributed software engineering

(DSE) contains observations of the personal, interpersonal, and organizational human factors that

result in such dichotomies. This paper details the current state of studies regarding DSE and

resultant impacts on software quality. Areas of software engineering which involve

sociotechnical human factors are largely understudied. Only fragments of information connect

studies involving DSE. Nevertheless, existing literature contains patterns into the effects of

distribution on communication, coordination, and cooperation among software engineers and

analogous careers. Their experiences intertwine with these factors, along with awareness and

trust. Empirical studies reveal the use of diverse software quality metrics, leading to a set of

conclusions comparable among studies. Still, the effects of distribution on software quality are

unclear. Before bodies of knowledge can contain accepted DSE practices, further collaboration is

required in research fields involving human factors in software engineering.

Introduction

The advent of the COVID-19 pandemic forced software engineers across the world to shift into

remote work, and their dichotomous experiences are already making their way into publications

[23, 49]. This shift’s scale and speed was unlike any before, but literature involving the analysis

and review of distributed software engineering (DSE) is not as new. The evolution of technology

has dictated globalization of markets, especially in software engineering. As a result, research

regarding software engineering in a distributed context has increased. The purpose of this

literature review is to synthesize concepts provided in recent research and provide an overview

of the human factors involved in DSE. The process of gathering and exploring literature was

carried out using the following parameters.

1. Studies published after the year 2000 were considered for review. This choice of the year

was intended to limit the review’s scope to the most recent of research. Any work in this

subject area before the year 2000 should be considered of no less importance. Those

authors are thanked for their work in a field that was mostly barren at that time.

2. Only studies published in the English language were considered for review; this was not

intended to limit the scope to research conducted in primarily English-speaking regions.

2

Instead, it was to appease this author’s monolingualism. Literature from globally

dispersed authors was purposefully pursued.

3. Systematic reviews and mapping studies were leveraged to find other research but were

not used as primary sources unless they made unique contributions.

Within these parameters, the following databases and catalogs were utilized: ACM Digital

Library, arXiv, Gale, Google Scholar, IEEE Xplore, ResearchGate, ScienceDirect, Search@UW,

SpringerLink, and Wiley Online Library. Searches included various combinations of the

following keywords: (dislocated, dispersed, distributed, global, nearshore, offshore, offsite,

virtual, work from home) and (quality, security, software) and (development, engineering,

organizations, teams) and (effect, failure, impact, improvement) and (aspects, awareness,

barriers, capabilities, communication, coordination, culture, factors, happiness, human,

impediments, information sharing, obstacles, sociotechnical) and (case study, empirical, review,

taxonomy). Zotero was used as a reference-management tool.

Distributed Software Engineering

Distributed software engineering (DSE), also referred to as distributed software development

(DSD), is a term that describes many related organizational structures. Unfortunately, this

growing field has no unified terminology or taxonomy. Many features described as part of DSE

or DSD overlap across different papers, but authors rarely define the terms used [53]. The lack of

standardization leaves research fragmented, and few authors have made a notable effort into

untangling the web of terminology. Two papers to date, written by Gumm [25] in 2006 and

Šmite et al. [53] in 2014, contain descriptions that best fit those used by other authors. Through

literature review and expert surveys, both papers describe DSE as a facet of geographic location

and relationships involving inter-organizational and intra-organizational structures [25, 53].

Furthermore, the latter study is the only one to map an empirically based DSE taxonomy, as

shown in Figure 1. This taxonomy is useful in classifying the organizational structures described

in existing studies, and it cannot delineate the descriptions of DSE in all papers.

For example, the taxonomy created by Šmite et al. uses geographic distance as a level of DSE,

further defining “far” and “near” as describing classes [53]. They make no distinction of global

distribution. In contrast, other authors define global software engineering/development

(GSE/GSD) as a distinct subtype of DSE determined by international distribution [25, 47]. Even

so, these and other authors have used the terms and descriptions of DSE/DSD/GSE/GSD

interchangeably. For the sake of continuity, this literature review will continue to use the term

DSE and note that GSE/GSD is an artifact of international geographic distance. Another example

of disagreement involves the inclusion of culture as a distinct factor. The distribution of software

engineering has increased cultural diversity within organizations. Many of the papers included in

this literature review describe challenges in DSE involving cultural differences such as language,

politics, religion, work ethics, and more. Thus, there are arguments that culture may not only be

a factor of geographic location but also a distinct dimension of DSE [2, 8, 11, 15, 48]. The paper

by Šmite et al. states that the impact of culture on DSE is vitally important to consider but does

not explain the lack of its inclusion as a dimension separate from geographic location [53].

3

Furthermore, common terms such as dispersed, distributed, remote, and virtual software

engineering teams are examples of names for low-level organizational structures that are not

defined in existing taxonomies for DSE. In one paper, a distributed team is defined as a group of

geographically distributed individuals who work on the same executable for a project [7].

Contrarily, that description of a distributed team is more akin to that of a virtual team in a

different paper, whereby virtual team members work “jointly on the same tasks” and distributed

team members do not [31]. However, in other papers, the terms are used interchangeably as a

general description of teams that are project-specific and contain any members who are

geographically distributed [4, 25, 42, 43, 45, 50].

These differences in basic terminology highlight the fragmentation of knowledge in the field of

distributed software engineering. A more widely accepted taxonomy, as stated by Šmite et al.,

“would potentially result in improvement of our understanding of individual strategies” [53].

Figure 1: A taxonomy of DSE [53]

Trust, Awareness, and the 3C Model

A distributed environment directly impacts conventional software engineering practices at each

phase of the development lifecycle [37]. These impacts can be described through the lenses of

communication, coordination, and cooperation [52]. Titled the “Three C’s” or the “3C Model”,

these three terms are used widely throughout literature involving DSE. However, as is similar to

general DSE terminology, most papers do not contain definitions or references for the terms. In

the following paragraphs, the definitions of each term in the 3C Model are adapted from multiple

authors’ work. One paper explicitly provides definitions in the context of software engineering

[36]. Another paper describes the model in the context of general collaborative systems, shown

Location

Legal

Entity

Geographic

Distance

Temporal

Distance

Onshore Offshore

Insourcing Outsourcing Insourcing Outsourcing

Close Distant Close Distant

S
im

il
ar

S
im

il
ar

D
if

fe
re

n
t

S
im

il
ar

S
im

il
ar

D
if

fe
re

n
t

Near Far Near Far

S
m

al
l

S
m

al
l

L
ar

g
e

S
m

al
l

S
m

al
l

L
ar

g
e

4

in Figure 2 [24]. The last paper provides a diagram of the author’s perceived barriers in DSE,

shown in Figure 3 [11]. It is worth noting that some authors use the term collaboration in place

of cooperation. Trust and awareness are two of the most explored themes in human factors

literature [39]. These interpersonal factors are critically interrelated with the 3C Model [19, 44,

55].

Figure 2: The 3C Model for general collaborative systems [24]

Researchers usually approach trust between humans and machines. However, when designing

sociotechnical systems, interpersonal trust is a critical factor. Frameworks that model the trust

formation process allow for a better ability to develop and maintain collaborative systems [39].

An article titled “Bridging the Gap Between Awareness and Trust in Globally Distributed

Software Teams” describes interpersonal trust in DSE as the positive or negative expectations

people have about each other’s behavior [55]. Attributions, ways people reason on the cause of

events, form these expectations and make up a person’s perceived trustworthiness.

A fundamental attribution error occurs when a person makes an attribution based on someone’s

characteristics when they should have instead based it on the event’s circumstances. As noted by

one expert in Globally Distributed Software Development [10], fundamental attribution errors

are more common in DSE due to the lack of social presence. Without natural social context, trust

must be “actively facilitated, fostered and developed” instead of formed through natural

awareness [11]. The same expert also presented findings from four independent case studies

involving onshore and offshore distribution. Each case involved severe failures of project

management that resulted in a “them versus us” culture between remote teams; such failures

were attributed to a lack of maintenance of awareness.

Awareness is the bridge between trust and the 3C Model. In order for members of software

engineering processes to effectively collaborate, they must be aware of both formal and informal

Communication Coordination

Cooperation
demands arranges tasks for

generates commitments

that are managed by

Awareness and Trust

fosters

mediates

fosters

mediates

fosters mediates

5

aspects involving each other. In paper [44], the authors define the dimensions of awareness as

follows.

• Informal awareness involves knowing what group members are doing.

• Group-structural awareness involves knowing the roles of group members.

• Social awareness involves knowing the state of attention, interests, and emotions of group

members.

• Workspace awareness involves knowing the resources related to coordination.

The authors also describe a fifth dimension, context awareness. The aspects of this dimension

crosscut the others. If each of the four basic dimensions is a pool of knowledge that is developed

and maintained, then context awareness is the information about their interrelatedness and state

over time. In other words, awareness requires context, which is a form of awareness in itself.

This context allows people to make more accurate attributions of trust [55]. Some of awareness

development is natural; a person will learn more about their colleagues with time. Other parts

need to be actively maintained; a project timeline may be required to keep everyone on the same

page. Unfortunately, developing and maintain awareness is problematic in DSE [16, 33].

Processes involving communication, coordination, and cooperation require changes in order to

establish means of awareness development comparable to traditional SE.

Figure 3: The 3C Model as used to describe DSE barriers [11]

Communication is the exchange of information via any media between people [24, 36]. It is

possibly the single most referenced factor related to DSE challenges [7]. Traditional face-to-face

meetings are far less common, so communication requires some technological medium. One

notable paper describes the need for adequate communication mechanisms in DSE in terms of

media richness [4]. Specifically, reducing ambiguity in communication requires rich media such

as video conferencing. Likewise, another study found that the loss of face-to-face

communication introduced significant project delays due to inadequate tools available for rich

communication [27]. Even with rich media, an inability to interpret body language or eye contact

can lead to a lack of awareness and less creative discussion [33]. Likewise, language differences

Coordination
and Visibility

Communication
and Cooperation

impacts

Distance

introduces

adds to

Barriers
and Complexity

adds to

negatively
impacts

negatively
impacts

6

may relate to unbalanced communication in DSE [54]. One paper states that the richness of

media can never overcome the hindrances on communication caused by distance and cultural

differences [43]. However, this claim is disputed in recent years. In a direct refutation, one set of

authors state that “distance does not have as strong of an effect on distributed communication

delay and task completion as we have seen in past research” [41]. Nevertheless, distribution can

positively impact communication in some environments, as the freedom to choose the richness of

media allows for more efficient communication depending on the circumstance [35].

Coordination is the organization of people and tasks [24, 36]. The success of software

engineering in a distributed environment relies on successful coordination [26]. There can be

many of individuals or teams that are owners of certain parts of a distributed software project.

For software parts to eventually compose an entire product, individuals and teams must

coordinate. They must share schedules, allocate responsibilities, and maintain dependencies of

tasks onto individuals and teams [19]. Therefore, coordination leverages communication and

cooperation by engaging people in meetings to create schedules, responsibilities, and tasks [24,

32, 38]. Geographic and temporal dispersion results in increased complexity and cost of

coordination [18]. People engaging in DSE may find themselves frequently missing release dates

due to the complexity of cross-team coordination created by distance [19]. Some researchers

have observed that organizational support for defined coordination structures should be

established early in a project’s timeline. Software architects, who begin to work in the earliest

stages of development, have a significant role in shaping the mechanisms for coordination [26].

Likewise, both developers and stakeholders must define involved parties, expectations for

coordination, scheduling, and other mechanisms early in a project [11, 54]. Thus, coordination

relies heavily on individual and team awareness.

Cooperation is the process of people working together on tasks in a shared environment, which

describes actions of collective work [24, 36]. Instances of cooperation are directly supported by

communication and coordination, thus distribution also negatively impacts the ability for people

to effectively cooperate [11, 37]. There are plenty of existing tools to leverage in distributed

cooperation, and some studies have claimed more importance of consistency in choosing tools

than the specific tools themselves [7, 47, 48, 54]. In practice, cooperation is dependent mainly on

the engineering approaches used. One such approach, Agile, allows organizations to maintain

specific human roles, timelines, and meetings for SE teams [14]. Multiple studies have shown

success in DSE after carefully planned implementations of SE methodologies such as Agile and

eXtreme Programming, as well as techniques like pair programming [14, 36, 48]. Software

engineers must be motivated to effectively cooperate with each other in a distributed

environment, and much of this responsibility lies with management [51]. Teams that consistently

demonstrate progress towards goals are those that possess a cohesive and honest atmosphere [8].

As stated in one engineering management textbook, “coordination boils down to two conditions:

1) that people and units know what they are to do and 2) when they are to do it” [5]. However,

software engineers cannot rely solely on their individual cognition, and they must be able to

consult with others to solve problems and work towards large goals [8]. Cooperation requires

trust between coworkers and units, no matter where they are located.

7

Impacts of DSE on Software Quality

Software engineering is a sociotechnical activity entrenched in human-centered design. In this

context, human-centered design is a sustainable approach in SE that addresses ergonomics

regarding users, developers, and other stakeholders [28]. As a human-centered activity, each

phase of SE is greatly affected by each parties’ feelings, attitudes, and behaviors [1, 34].

As discussed in the preceding section, researchers use the concepts of trust, awareness, and the

3C Model to describe impacts of distribution on human-centered design. The makeup of DSE

literature is largely formulative. Researchers provide creative explorations of challenges in DSE

through the use of interviews, case studies, and interviews. The conclusions that researchers

provide aim to alleviate sociotechnical concerns introduced by distribution in software

engineering processes. Even with consideration of the immaturity of the DSE field, researchers

often state similar lessons and suggestions. An unordered list of synthesized conclusions is as

follows.

1. A balanced and consistent mix of synchronous and asynchronous communication, with

the freedom to choose from the newest tools, mitigates many social concerns with

distributed communication [7, 17, 50]. It may be helpful to explicitly define a

communication model and train people on it [2, 54].

2. Information sharing, or knowledge sharing, is conducive to the process of building

contextual awareness [26, 47]. Multiple authors describe overcoming the struggles of

coordination in DSE by utilizing daily meetings explicitly designed around the concept of

information sharing [19, 33, 35, 37, 54]. There must be extensive and transparent

documentation of any and all decision-making, especially information that could be

implicitly shared in a face-to-face setting [35, 50].

3. Cooperative processes must be explicitly defined during the planning stages for project

management [38, 47]. Project managers are responsible for ensuring that all objectives

are understood by personnel [11]. Some authors describe a need for small team size [2,

30, 54], but not all agree that it is of significant concern [17, 40].

4. Managers should organize workshops, informal social meetings, and establish a formal

trust building process [33, 37, 51, 55]. This also enables further awareness of cultural

profiles on and between teams of different sites [7, 37, 51].

These conclusions are not unique to the literature reviewed. This is evident when reviewing The

Guide to the Software Engineering Body of Knowledge (SWEBOK), a book which is listed as an

international standard and is a foundation for deciding university accreditation criteria [20, 29].

Each of the topics covered in SWEBOK is accompanied by references that are noted to be

complete, sufficient, consistent, credible, current, and succinct [8]. SWEBOK has two notable

sections that detail accepted elements of professional practice for software engineers. The

sections, titled “Group Dynamics and Psychology” and “Communication Skills”, contain

conclusions that are remarkably similar to those synthesized above [8]. Interestingly, only few of

these topics contain descriptions of any factors related to distribution. It is possible that the

synthesized conclusions identified above should be considered areas of extra focus. Researchers

have largely identified those conclusions, instead of other areas described in SWEBOK, as

success factors for DSE. Nevertheless, the origin of their conclusions is not usually empirical.

8

There are very few empirical studies that measure the impacts of distribution on software quality;

of those studies, results can be conflicting.

Measurements of software defects are a common way to investigate the impact of DSE on

quality. Jabangwe et al. [30] detailed a study of two commercial products developed throughout

the same company, but each spread between Sweden and Russia. In the Šmite et al. [53]

taxonomy, this would be considered offshore insourcing. Each of these projects was also

undergoing a project management shift. The authors state that such shifts are usually linked to a

decrease in quality. In this study, software quality is evaluated using metrics from source code

(internal quality) and reported defects (external quality). Source code metrics included size

measures such as Lines of Code and complexity measures like Average McCabe Cyclomatic

Complexity. The authors have found these measures to be reasonable indications of quality in the

past. Defect data came from post-release customer reported issues that were a result of a

deficiency in source code. Extensive analysis was performed throughout multiple release cycles.

Defect data was studied using descriptive statistics and visualizations over time. Source code

measures were analyzed with heat maps and moving-range charts. Jabangwe et al. [30] found no

observable impact of distribution on quality, attributing a list of success factors.

Bird et al. [7] conducted a similar study in 2009. These authors studied the source code base for

Windows Vista, which included contributions from 2,757 developers across Asia, Europe, and

North America. The authors described various geographic location classifications of building,

cafeteria, campus, locality, continent, and world. Engineers worked in a distributed context in

each of these categories, each of which introduced different elements of location, geographic

distance, temporal distance, and cultural barriers. Thus, the entire study cannot be swiftly

mapped to the Šmite et al. [53] taxonomy. However, the project is solely involved with

insourcing. The source code for individual executables and libraries was mapped to commit logs

and a geographic classification. Like the methodology used in Jabangwe et al. [30], external and

internal code quality metrics were collected. The researchers studied post-release failures, code

size and complexity, code churn (a measure of rework), test coverage, and dependencies between

binaries. They found that there was no significant evidence of adverse effects to quality from

distribution. The paper contains a conclusion of positive sociotechnical practices provided from

discussions with both management and senior employees.

Cataldo and Nambiar [13] conducted a study of the impacts of distribution on software quality

using data from an embedded systems company. The data spanned 189 projects that were

distributed across Europe, India, and Japan. Regarding the Šmite et al. taxonomy, this

organizational structure resembles insourcing, but further distance elements vary. The authors

measured software quality as the number of defects reported during integration and system

testing for each project. Measures of external software quality were not used. An impressive set

of independent variables were unlike those used in other papers. Two indexes, spatial distance

and temporal distance, were used to compare two locations, the number of people at each, and

the number of people in the project total. Also, the authors conceptualized configurational

dispersion as measures of people-based dispersion and modification-request-based dispersion.

Finally, control factors related to code size, code churn, and architectural component

modification were captured. After examining and discussing the results of multiple logistic

regression models, Cataldo and Nambiar [13] concluded that multiple dimensions of DSE have

9

independent impact on quality. However, they did not conclude that spatial distribution

negatively impacts software quality on a broad level.

Multiple other studies extend conclusions involving negative impacts on software quality due to

distribution. Even two authors from an aforementioned study [7], Bird and Nagappan, have

found contradictory results in different software projects. In evaluating pre and post-release

defects in the Eclipse and Firefox codebases, these authors found that “all measures of

geographic and organizational distribution increase failures, but the effects are not consistent

across releases” [6]. Likewise, Cataldo and Nambiar concluded in a later study that higher levels

of temporal dispersion in a team negatively affected software quality [12]. The effects of team

size are also massively contested.

One especially interesting study involves a deeper dive into why these contradictory findings

may occur. Motivated by a “quest to find empirical evidence of the effect of distance on software

artifacts,” the authors explore the idea of aggregation bias in a large case study [40]. Aggregation

bias occurs when evaluating a hypothesis on software artifacts contradicts that on the aggregate

of those artifacts. Previous empirical evidence of this type of bias is reported in multiple other

studies [40]. The case study involved data from the IBM Rational Jazz project over fourteen

months. The project was distributed among sixteen sites in the United States, Canada, and

Europe. The authors chose to evaluate two software quality constructs, the time for a work item

resolution and the defect count. Data was collected based on these quality measures for software

artifacts and their aggregate components. The paper details statistical analyses including

distribution comparisons, controlled comparisons, and multivariate analysis. Nguyen et al. [40]

conclude that the effects of distribution can be observed at the artifact level, but not at the

component level. The authors note that this confirms that aggregation bias may explain the

contradictory findings, but extensive future work is needed. Unfortunately, this study has

seemingly gone unnoticed by other researchers.

Conclusion

The impacts of distribution on software quality are unclear. At most, the synthesis of current

literature results in the conclusion that software quality is dependent on the measures used,

elements of distribution, and the extent of mitigating factors. Even those success factors from

studies on the effects of distribution on software quality are not remarkably different from

accepted practices already identified in SWEBOK. Despite the critical role of human factors,

researchers have only just begun to unravel their impacts in software engineering [9].

Longstanding overrepresentation of technical aspects has obstructed the advancement of

practices in both the classroom and the workplace. In what one author considers to be the only

comprehensive review of human factors in software engineering [3], Pirzadeh [46] concluded

that primary study researchers have acutely overlooked human factors in software engineering,

specifically human factors at the interpersonal level. Even the few studies that have considered

personal factors of developers reportedly used outdated metrics [21].

Furthermore, even though academic societies such as IEEE CS and ACM call for university

curricula that dives deeper into human factors, progress is not apparent [9]. Capretz, an

10

established researcher and educator, states that “[T]his won’t change until we realize that the

human element is pivotal to software engineering and that it’s worthwhile studying and teaching

this so-called soft subject. However, few courses in any computer science or software

engineering curricula even mention it” [9]. Fortunately, the number of papers dealing with

human factors in SE is on an upward trend in the past twenty years [3]. Likewise, even

considering the fragmentation of DSE research, Šmite et al. [53] provide a positive outlook for

future research and practice. There is work to be done, but research is headed in the right

direction.

11

References

[1] Acuna, S. T., Juristo, N., & Moreno, A. M. (2006). Emphasizing human capabilities in

software development. IEEE Software, 23(2), 94–101. https://doi.org/10.1109/MS.2006.47

[2] Al-Ani, B., & Edwards, H. K. (2008). A Comparative Empirical Study of Communication

in Distributed and Collocated Development Teams. 2008 IEEE International Conference

on Global Software Engineering, 35–44. https://doi.org/10.1109/ICGSE.2008.9

[3] Amrit, C., Daneva, M., & Damian, D. (2014). Human factors in software development: On

its underlying theories and the value of learning from related disciplines. A guest editorial

introduction to the special issue. Information and Software Technology, 56(12), 1537–1542.

https://doi.org/10.1016/j.infsof.2014.07.006

[4] Andres, H. (2002). A comparison of face-to-face and virtual software development teams.

Team Performance Management, 8, 39–48. https://doi.org/10.1108/13527590210425077

[5] Babcock, D. L., Morse, L. C., & Schell, W. J. (2020). Managing engineering and

technology (Seventh edition). Pearson Education, Inc.

[6] Bird, C., & Nagappan, N. (2012). Who? Where? What? Examining distributed development

in two large open source projects. 2012 9th IEEE Working Conference on Mining Software

Repositories (MSR), 237–246. https://doi.org/10.1109/MSR.2012.6224286

[7] Bird, C., Nagappan, N., Devanbu, P., Gall, H., & Murphy, B. (2009). Does distributed

development affect software quality? An empirical case study of Windows Vista. 2009

IEEE 31st International Conference on Software Engineering, 518–528.

https://doi.org/10.1109/ICSE.2009.5070550

[8] Bourque, P., Fairley, R. E., & IEEE Computer Society. (2014). Guide to the software

engineering body of knowledge.

[9] Capretz, L. F. (2014). Bringing the Human Factor to Software Engineering. IEEE Software,

31(2), 104–104. https://doi.org/10.1109/MS.2014.30

[10] Casey, V. (n.d.). Dr. Val Casey | UL - University of Limerick. Retrieved January 16, 2021,

from https://www.ul.ie/research/dr-val-casey

[11] Casey, V. (2010). Developing Trust In Virtual Software Development Teams. Journal of

Theoretical and Applied Electronic Commerce Research, 5(2), 41–58.

https://doi.org/10.4067/S0718-18762010000200004

[12] Cataldo, M., & Nambiar, S. (2009). On the relationship between process maturity and

geographic distribution: An empirical analysis of their impact on software quality.

Proceedings of the 7th Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, 101–

110. https://doi.org/10.1145/1595696.1595714

[13] Cataldo, M., & Nambiar, S. (2009). Quality in Global Software Development Projects: A

Closer Look at the Role of Distribution. 2009 Fourth IEEE International Conference on

Global Software Engineering, 163–172. https://doi.org/10.1109/ICGSE.2009.24

[14] Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor.

Computer, 34(11), 131–133. https://doi.org/10.1109/2.963450

[15] Conchuir, E. O., Holmstrom, H., Agerfalk, P. J., & Fitzgerald, B. (2006). Exploring the

Assumed Benefits of Global Software Development. 2006 IEEE International Conference

on Global Software Engineering (ICGSE’06), 159–168.

https://doi.org/10.1109/ICGSE.2006.261229

12

[16] Dullemond, K., Gameren, B. van, & Solingen, R. van. (2012). Supporting distributed

software engineering in a fully distributed organization. 2012 5th International Workshop

on Co-Operative and Human Aspects of Software Engineering (CHASE), 30–36.

https://doi.org/10.1109/CHASE.2012.6223017

[17] Edwards, H. K., & Sridhar, V. (2003). Analysis of the effectiveness of global virtual teams

in software engineering projects. 36th Annual Hawaii International Conference on System

Sciences, 2003. Proceedings of The, 9 pp.-. https://doi.org/10.1109/HICSS.2003.1173664

[18] Ehrlich, K., Helander, M., Valetto, G., Davies, S., & Williams, C. (n.d.). 1An Analysis of

Congruence Gaps and Their Effect on Distributed Software Development. 11.

[19] Espinosa, J., Slaughter, S., Kraut, R., & Herbsleb, J. (2007). Team Knowledge and

Coordination in Geographically Distributed Software Development. J. of Management

Information Systems, 24, 135–169. https://doi.org/10.2753/MIS0742-1222240104

[20] Fairley, R. E. D., Bourque, P., & Keppler, J. (2014). The impact of SWEBOK Version 3 on

software engineering education and training. 2014 IEEE 27th Conference on Software

Engineering Education and Training (CSEE T), 192–200.

https://doi.org/10.1109/CSEET.2014.6816804

[21] Feldt, R., Torkar, R., Angelis, L., & Samuelsson, M. (2008). Towards individualized

software engineering: Empirical studies should collect psychometrics. Proceedings of the

2008 International Workshop on Cooperative and Human Aspects of Software Engineering

- CHASE ’08, 49–52. https://doi.org/10.1145/1370114.1370127

[22] FitzGerald, A. (2020). The Impact of Human Factors in Distributed Software Engineering

[Unpublished manuscript.]. University of Wisconsin - Platteville.

[23] Ford, D., Storey, M.-A., Zimmermann, T., Bird, C., Jaffe, S., Maddila, C., Butler, J. L.,

Houck, B., & Nagappan, N. (2020). A Tale of Two Cities: Software Developers Working

from Home During the COVID-19 Pandemic. ArXiv:2008.11147 [Cs].

http://arxiv.org/abs/2008.11147

[24] Fuks, H., Raposo, A., Gerosa, M. A., Pimental, M., & Lucena, C. (2007). The 3C

collaboration model (pp. 637–644). https://doi.org/10.4018/978-1-59904-000-4.ch097

[25] Gumm, D. C. (2006). Distribution Dimensions in Software Development Projects: A

Taxonomy. IEEE Software, 23(5), 45–51. https://doi.org/10.1109/MS.2006.122

[26] Herbsleb, J. D. (2007). Global Software Engineering: The Future of Socio-technical

Coordination. Future of Software Engineering (FOSE ’07), 188–198.

https://doi.org/10.1109/FOSE.2007.11

[27] Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. (2000). Distance,

dependencies, and delay in a global collaboration. Proceedings of the 2000 ACM

Conference on Computer Supported Cooperative Work - CSCW ’00, 319–328.

https://doi.org/10.1145/358916.359003

[28] International Organization for Standardization. (2010). Ergonomics of human-system

interaction—Part 210: Human-centred design for interactive systems (ISO Standard No.

9241-210:2010). https://www.iso.org/standard/52075.html

[29] International Organization for Standardization. (2015). Software Engineering—Guide to the

software engineering body of knowledge (SWEBOK) (ISO/IEC Standard No. 19759:2015).

https://www.iso.org/standard/67604.html

[30] Jabangwe, R., Börstler, J., & Petersen, K. (2015). Handover of managerial responsibilities

in global software development: A case study of source code evolution and quality.

Software Quality Journal, 23(4), 539–566. https://doi.org/10.1007/s11219-014-9247-1

13

[31] Jalali, S., & Wohlin, C. (2010). Agile Practices in Global Software Engineering—A

Systematic Map. 2010 5th IEEE International Conference on Global Software Engineering,

45–54. https://doi.org/10.1109/ICGSE.2010.14

[32] Jiménez, M., Piattini, M., & Vizcaíno, A. (2009). Challenges and Improvements in

Distributed Software Development: A Systematic Review. Advances in Software

Engineering, 2009, 1–14. https://doi.org/10.1155/2009/710971

[33] Jolak, R., Wortmann, A., Chaudron, M., & Rumpe, B. (2018). Does Distance Still Matter?

Revisiting Collaborative Distributed Software Design. IEEE Software, 35(6), 40–47.

https://doi.org/10.1109/MS.2018.290100920

[34] Lenberg, P., Feldt, R., & Wallgren, L.-G. (2014). Towards a behavioral software

engineering. Proceedings of the 7th International Workshop on Cooperative and Human

Aspects of Software Engineering, 48–55. https://doi.org/10.1145/2593702.2593711

[35] Lous, P., Tell, P., Michelsen, C. B., Dittrich, Y., Kuhrmann, M., & Ebdrup, A. (2018).

Virtual by Design: How a Work Environment can Support Agile Distributed Software

Development. 2018 IEEE/ACM 13th International Conference on Global Software

Engineering (ICGSE), 97–106.

[36] Mishra, D., & Mishra, A. (2009). Effective communication, collaboration, and coordination

in eXtreme Programming: Human-centric perspective in a small organization. Human

Factors and Ergonomics in Manufacturing, 19(5), 438–456.

https://doi.org/10.1002/hfm.20164

[37] Misra, S., Colomo-Palacios, R., Pusatlı, T., & Soto-Acosta, P. (2013). A discussion on the

role of people in global software development. Tehnicki Vjesnik, 20, 525–531.

[38] Misra, S., & Fernández-Sanz, L. (2011). Quality Issues in Global Software Development.

ICSEA 2011: The Sixth International Conference on Software Engineering Advances, 325–

330.

[39] Morita, P. P., & Burns, C. M. (2014). Understanding ‘interpersonal trust’ from a human

factors perspective: Insights from situation awareness and the lens model. Theoretical

Issues in Ergonomics Science, 15(1), 88–110.

https://doi.org/10.1080/1463922X.2012.691184

[40] Nguyen, T. H. D., Adams, B., & Hassan, A. E. (2016). Does Geographical Distance Effect

Distributed Development Teams: How Aggregation Bias in Software Artifacts Causes

Contradictory Findings. 2016 IEEE 27th International Symposium on Software Reliability

Engineering (ISSRE), 412–423. https://doi.org/10.1109/ISSRE.2016.36

[41] Nguyen, T., Wolf, T., & Damian, D. (2008). Global Software Development and Delay:

Does Distance Still Matter? 2008 IEEE International Conference on Global Software

Engineering, 45–54. https://doi.org/10.1109/ICGSE.2008.39

[42] Olariu, C., & Aldea, C. C. (2014). Managing Processes for Virtual Teams – A BPM

Approach. Procedia - Social and Behavioral Sciences, 109, 380–384.

https://doi.org/10.1016/j.sbspro.2013.12.476

[43] Olson, G. M., & Olson, J. S. (2000). Distance Matters. Human–Computer Interaction,

15(2–3), 139–178. https://doi.org/10.1207/S15327051HCI1523_4

[44] Omoronyia, I., Ferguson, J., Roper, M., & Wood, M. (2010). A review of awareness in

distributed collaborative software engineering. Software: Practice and Experience, 40(12),

1107–1133. https://doi.org/10.1002/spe.1005

14

[45] Pierce, R., & St.Amant, K. (2011). Working from home in a globally distributed

environment. SIGDOC’11 - Proceedings of the 29th ACM International Conference on

Design of Communication. https://doi.org/10.1145/2038476.2038519

[46] Pirzadeh, L. (2010). Human Factors in Software Development: A Systematic Literature

Review [Master’s thesis, Chalmers University of Technology].

https://hdl.handle.net/20.500.12380/126748

[47] Prikladnicki, R., Audy, J. L. N., & Evaristo, R. (2003). Global software development in

practice lessons learned. Software Process: Improvement and Practice, 8(4), 267–281.

https://doi.org/10.1002/spip.188

[48] Rajpal, M. (2018). Effective Distributed Pair Programming. 2018 IEEE/ACM 13th

International Conference on Global Software Engineering (ICGSE), 6–10.

https://dl.acm.org/doi/10.1145/3196369.3196388

[49] Ralph, P., Baltes, S., Adisaputri, G., Torkar, R., Kovalenko, V., Kalinowski, M., Novielli,

N., Yoo, S., Devroey, X., Tan, X., Zhou, M., Turhan, B., Hoda, R., Hata, H., Robles, G.,

Fard, A. M., & Alkadhi, R. (2020). Pandemic Programming: How COVID-19 affects

software developers and how their organizations can help. Empirical Software Engineering,

25(6), 4927–4961. https://doi.org/10.1007/s10664-020-09875-y

[50] Reed, A. H., & Knight, L. V. (2010). Effect of a virtual project team environment on

communication-related project risk. International Journal of Project Management, 28(5),

422–427. https://doi.org/10.1016/j.ijproman.2009.08.002

[51] Richardson, I., Casey, V., McCaffery, F., Burton, J., & Beecham, S. (2012). A Process

Framework for Global Software Engineering Teams. Information and Software

Technology, 54(11), 1175–1191. https://doi.org/10.1016/j.infsof.2012.05.002

[52] Šmite, D., Moe, N. B., & Torkar, R. (2008). Pitfalls in Remote Team Coordination: Lessons

Learned from a Case Study. In A. Jedlitschka & O. Salo (Eds.), Product-Focused Software

Process Improvement (pp. 345–359). Springer. https://doi.org/10.1007/978-3-540-69566-

0_28

[53] Šmite, D., Wohlin, C., Galviņa, Z., & Prikladnicki, R. (2014). An empirically based

terminology and taxonomy for global software engineering. Empirical Software

Engineering, 19(1), 105–153. https://doi.org/10.1007/s10664-012-9217-9

[54] Stray, V., & Moe, N. B. (2020). Understanding coordination in global software

engineering: A mixed-methods study on the use of meetings and Slack. Journal of Systems

and Software, 170, 110717. https://doi.org/10.1016/j.jss.2020.110717

[55] Trainer, E. H., & Redmiles, D. F. (2018). Bridging the gap between awareness and trust in

globally distributed software teams. Journal of Systems and Software, 144, 328–341.

https://doi.org/10.1016/j.jss.2018.06.028

Acknowledgements

This paper is adapted from a literature review written for Dr. Dianne McMullin’s Human Factors

Engineering course in the fall of 2020 [22]. This final version was submitted for Dr. Joshua

Yue’s Senior Seminar class in the spring of 2021.

